
scriv
Release 1.5.1

Ned Batchelder

Dec 14, 2023





CONTENTS

1 Overview 3

2 Getting Started 5

3 How To Contribute 25

i



ii



scriv, Release 1.5.1

Scriv changelog management tool

CONTENTS 1

https://pypi.python.org/pypi/scriv/
https://github.com/nedbat/scriv/actions?query=workflow%3A%22Test+Suite%22
https://github.com/nedbat/scriv/actions?query=workflow%3A%22Test+Suite%22
http://scriv.readthedocs.io/en/latest/
https://pypi.python.org/pypi/scriv/
https://github.com/nedbat/scriv/blob/master/LICENSE.txt
https://github.com/sponsors/nedbat
https://hachyderm.io/@nedbat


scriv, Release 1.5.1

2 CONTENTS



CHAPTER

ONE

OVERVIEW

Scriv is a command-line tool for helping developers maintain useful changelogs. It manages a directory of changelog
fragments. It aggregates them into entries in a CHANGELOG file.

Currently scriv implements a simple workflow. The goal is to adapt to more styles of changelog management in the
future.

3



scriv, Release 1.5.1

4 Chapter 1. Overview



CHAPTER

TWO

GETTING STARTED

Scriv writes changelog fragments into a directory called “changelog.d”. Start by creating this directory. (By the way,
like many aspects of scriv’s operation, you can choose a different name for this directory.)

To make a new changelog fragment, use the “scriv create” command. It will make a new file with a filename using
the current date and time, your GitHub or Git user name, and your branch name. Changelog fragments should be
committed along with all the other changes on your branch.

When it is time to release your project, the “scriv collect” command aggregates all the fragments into a new entry in
your changelog file.

You can also choose to publish your changelog entries as GitHub releases with the “scriv github-release” command.
It parses the changelog file and creates or updates GitHub releases to match. It can be used even with changelog files
that were not created by scriv.

2.1 Philosophy

Scriv’s design is guided by a few principles:

• Changelogs should be captured in a file in the repository. Scriv writes a CHANGELOG file.

• Writing about changes to code should happen close in time to the changes themselves. Scriv encourages writing
fragment files to be committed when you commit your code changes.

• How you describe a change depends on who you are describing it for. You may need multiple descriptions of
the same change. Scriv encourages writing changelog entries directly, rather than copying text from commit
messages or pull requests.

• The changelog file in the repo should be the source of truth. The information can also be published elsewhere,
like GitHub releases.

• Different projects have different needs; flexibility is a plus. Scriv doesn’t assume any particular issue tracker or
packaging system, and allows either .rst or .md files.

5



scriv, Release 1.5.1

2.1.1 Other Tools

Scriv is not the first tool to help manage changelogs, there have been many. None fully embodied scriv’s philopsophy.

Tools most similar to scriv:

• towncrier: built for Twisted, with some unusual specifics: fragment type is the file extension, issue numbers in
the file name. Only .rst files.

• blurb: built for CPython development, specific to their workflow: issue numbers from bugs.python.org, only .rst
files.

• setuptools-changelog: particular to Python projects (uses a setup.py command), and only supports .rst files.

• gitchangelog: collects git commit messages into a changelog file.

Tools that only read GitHub issues, or only write GitHub releases:

• Chronicler: a web hook that watched for merged pull requests, then appends the pull request message to the most
recent draft GitHub release.

• fastrelease: reads information from GitHub issues, and writes GitHub releases.

• Release Drafter: adds text from merged pull requests to the latest draft GitHub release.

Other release note tools:

• reno: built for Open Stack. It stores changelogs forever as fragment files, only combining for publication.

2.2 Concepts

2.2.1 Fragments

Fragments are files describing your latest work, created by the “scriv create” command. The files are created in the
changelog.d directory (settable with fragment_directory). Typically, they are committed with the code change itself,
then later aggregated into the changelog file with “scriv collect”.

2.2.2 Categories

Changelog entries can be categorized, for example as additions, fixes, removals, and breaking changes. The list of
categories is settable with the categories setting.

If you are using categories in your project, new fragments will be pre-populated with all the categories, commented
out. While editing the fragment, you provide your change information in the appropriate category. When the fragments
are collected, they are grouped by category into a single changelog entry.

You can choose not to use categories by setting the categories setting to empty.

6 Chapter 2. Getting Started

https://github.com/hawkowl/towncrier
https://github.com/python/core-workflow/tree/master/blurb
https://pypi.org/project/setuptools-changelog/
https://pypi.org/project/gitchangelog/
https://github.com/NYTimes/Chronicler
https://fastrelease.fast.ai/
https://probot.github.io/apps/release-drafter/
https://docs.openstack.org/reno/latest/user/usage.html


scriv, Release 1.5.1

2.2.3 Entries

Fragments are collected into changelog entries with the “scriv collect” command. The fragments are combined in each
category, in chronological order. The entry is given a header with version and date.

2.3 Commands

2.3.1 scriv create

$ scriv create --help
Usage: scriv create [OPTIONS]

Create a new changelog fragment.

Options:
--add / --no-add 'git add' the created file.
--edit / --no-edit Open the created file in your text editor.
-v, --verbosity LVL Either CRITICAL, ERROR, WARNING, INFO or DEBUG
--help Show this message and exit.

The create command creates new fragments.

File creation

Fragments are created in the changelog.d directory. The name of the directory can be configured with the frag-
ment_directory setting.

The file name starts with the current date and time, so that entries can later be collected in chronological order. To
help make the files understandable, the file name also includes the creator’s git name, and the branch name you are
working on. “Main” branch names aren’t included, to cut down on uninteresting noise. The branch names considered
uninteresting are settable with the main_branches setting.

The initial contents of the fragment file are populated from the new_fragment_template template. The format is either
reStructuredText or Markdown, selectable with the format setting.

The default new fragment templates create empty sections for each category. Uncomment the one you want to use, and
create a bullet for the changes you are describing. If you need a different template for new fragments, you can create a
Jinja template and name it in the new_fragment_template setting.

Editing

If --edit is provided, or if scriv.create.edit is set to true in your git settings, scriv will launch an editor for you
to edit the new fragment. Scriv uses the same editor that git launches for commit messages.

The format of the fragment should be sections for the categories, with bullets for each change. The file is re-parsed
when it is collected, so the specifics of things like header underlines don’t have to match the changelog file, that will
be adjusted later.

Once you save and exit the editor, scriv will continue working on the file. If the file is empty because you removed all
of the non-comment content, scriv will stop.

2.3. Commands 7

https://jinja.palletsprojects.com


scriv, Release 1.5.1

Adding

If --add is provided, or if scriv.create.add is set to true in your git settings, scriv will “git add” the new file so
that it is ready to commit.

2.3.2 scriv collect

$ scriv collect --help
Usage: scriv collect [OPTIONS]

Collect and combine fragments into the changelog.

Options:
--add / --no-add 'git add' the updated changelog file and removed

fragments.
--edit / --no-edit Open the changelog file in your text editor.
--title TEXT The title text to use for this entry.
--keep Keep the fragment files that are collected.
--version TEXT The version name to use for this entry.
-v, --verbosity LVL Either CRITICAL, ERROR, WARNING, INFO or DEBUG
--help Show this message and exit.

The collect command aggregates all the current fragments into the changelog file.

Entry Creation

All of the .rst or .md files in the fragment directory are read, parsed, and re-assembled into a changelog entry. The
entry’s title is determined by the entry_title_template setting. The default uses the version string (if one is specified in
the version setting) and the current date.

Instead of using the title template, you can provide an exact title to use for the new entry with the --title option.

The output file is specified by the output_file setting. Scriv looks in the file for a special marker (usually in a comment) to
determine where to insert the new entry. The marker is “scriv-insert-here”, but can be changed with the insert_marker
setting. Using a marker like this, you can have your changelog be just part of a larger README file. If there is no
marker in the file, the new entry is inserted at the top of the file.

Fragment Deletion

The fragment files that are read will be deleted, because they are no longer needed. If you would prefer to keep the
fragment files, use the --keep option.

8 Chapter 2. Getting Started



scriv, Release 1.5.1

Editing

If --edit is provided, or if scriv.collect.edit is set to true in your git settings, scriv will launch an editor for you
to edit the changelog file. Mostly you shouldn’t need to do this, but you might want to make some tweaks. Scriv uses
the same editor that git launches for commit messages.

Adding

If --add is provided, or if scriv.collect.add is set to true in your git settings, scriv will “git add” the updates to
the changelog file, and the fragment file deletions, so that they are ready to commit.

2.3.3 scriv github-release

$ scriv github-release --help
Usage: scriv github-release [OPTIONS]

Create GitHub releases from the changelog.

Only the most recent changelog entry is used, unless --all is provided.

Options:
--all Use all of the changelog entries.
--check-links Check that links are valid (EXPERIMENTAL).
--dry-run Don't post to GitHub, just show what would be done.
--fail-if-warn Fail if a conversion generates warnings.
--repo TEXT The GitHub repo (owner/reponame) to create the

release in.
-v, --verbosity LVL Either CRITICAL, ERROR, WARNING, INFO or DEBUG
--help Show this message and exit.

The github-release command reads the changelog file, parses it into entries, and then creates or updates GitHub
releases to match. Only the most recent changelog entry is used, unless --all is provided.

An entry must have a version number in the title, and that version number must correspond to a git tag. For example,
this changelog entry with the title v1.2.3 -- 2022-04-06will be processed and the version number will be “v1.2.3”.
If there’s a “v1.2.3” git tag, then the entry is a valid release. If there’s no detectable version number in the header, or
there isn’t a git tag with the same number, then the entry can’t be created as a GitHub release.

The --fail-if-warn option will end the command if a format conversion generates a warning, usually because of
a missing reference. The --check-links option will find the URLs in the release description, and check if they are
valid. Warnings are displayed for invalid URLs, but the command still creates the release.

This command is independent of the other commands. It can be used with a hand-edited changelog file that wasn’t
created with scriv.

For writing to GitHub, you need a GitHub personal access token, either stored in your .netrc file, or in the
GITHUB_TOKEN environment variable.

The GitHub repo will be determined by examining the git remotes. If there is just one GitHub repo in the remotes, it
will be used to create the release. You can explicitly specify a repo in owner/reponame form with the --repo= option
if needed.

If your changelog file is in reStructuredText format, you will need pandoc 2.11.2 or later installed for the command to
work.

2.3. Commands 9

https://pandoc.org/


scriv, Release 1.5.1

2.4 Configuration

Scriv tries hard to be adaptable to your project’s needs. Many aspects of its behavior can be customized with a settings
file.

2.4.1 Files Read

Scriv will read settings from any of these files:

• setup.cfg

• tox.ini

• pyproject.toml

• scriv.ini in the fragment directory (“changelog.d/” by default)

In .ini or .cfg files, scriv will read settings from a section named either [scriv] or [tool.scriv].

A .toml file will only be read if the tomli or tomllib modules is available. You can install scriv with the [toml] extra
to install tomli, or tomllib is available with Python 3.11 or greater. In a .toml file, settings will only be read from the
[tool.scriv] section.

All of the possible files will be read, and settings will cascade. So for example, setup.cfg can set the fragment directory
to “scriv.d”, then “scriv.d/scriv.ini” will be read.

The settings examples here show .ini syntax. If you are using a pyproject.toml file for settings, you will need to adjust
for TOML syntax. This .ini example:

[scriv]
version = literal: pyproject.toml: project.version

would become:

[tool.scriv]
version = "literal: pyproject.toml: project.version"

2.4.2 Settings Syntax

Settings use the usual syntax, but with some extra features:

• A prefix of file: reads the setting from a file.

• A prefix of literal: reads a literal data from a source file.

• A prefix of command: runs the command and uses the output as the setting.

• Value substitutions can make a setting depend on another setting.

These are each explained below:

10 Chapter 2. Getting Started



scriv, Release 1.5.1

File Prefix

A file: prefix means the setting is a file name or path, and the actual setting value will be read from that file. The
file name will be searched for in three places: the fragment directory (changelog.d by default), the current directory, or
one of a few built-in templates. If the first path component is . or .., then only the current directory is considered.

Scriv provides two built-in templates:

• new_fragment.md.j2: The default Jinja template for new Markdown fragments:

<!--
A new scriv changelog fragment.

Uncomment the section that is right (remove the HTML comment wrapper).
-->

{% for cat in config.categories -%}
<!--
### {{ cat }}

- A bullet item for the {{ cat }} category.

-->
{% endfor -%}

• new_fragment.rst.j2: The default Jinja template for new reStructuredText fragments:

.. A new scriv changelog fragment.
{% if config.categories -%}
..
.. Uncomment the header that is right (remove the leading dots).
..
{% for cat in config.categories -%}
.. {{ cat }}
.. {{ config.rst_header_chars[1] * (cat|length) }}
..
.. - A bullet item for the {{ cat }} category.
..
{% endfor -%}
{% else %}
- A bullet item for this fragment. EDIT ME!
{% endif -%}

Literal Prefix

A literal: prefix means the setting value will be a literal string read from a source file. The setting provides a file
name and value name separated by colons:

[scriv]
version = literal: myproj/__init__.py: __version__

In this case, the file myproj/__init__.py will be read, and the __version__ value will be found and used as the
version setting.

2.4. Configuration 11



scriv, Release 1.5.1

Currently Python, .cfg, TOML, YAML and Cabal files are supported for literals, but other syntaxes can be supported
in the future.

When reading a literal from a TOML file, the value is specified using periods to separate the sections and key names:

[scriv]
version = literal: pyproject.toml: project.version

For data from a YAML file, use periods in the value name to access dictionary keys:

[scriv]
version = literal: galaxy.yaml: myproduct.versionString

When using a Cabal file, the version of the package can be accessed using:

[scriv]
version = literal: my-package.cabal: version

Commands

A command: prefix indicates that the setting is a shell command to run. The output will be used as the setting:

[scriv]
version = command: my_version_tool --next

Value Substitution

The chosen fragment format can be used in settings by referencing ${config:format} in the setting. For example,
the default template for new fragments depends on the format because the default setting is:

new_fragment_template = file: new_fragment.${config:format}.j2

2.4.3 Settings

These are the specifics about all of the settings read from the configuration file.

categories

Categories to use as headings for changelog items. See Categories.

Default: Removed, Added, Changed, Deprecated, Fixed, Security

12 Chapter 2. Getting Started



scriv, Release 1.5.1

end_marker

A marker string indicating where in the changelog file the changelog ends.

Default: scriv-end-here

entry_title_template

The Jinja template to use for the entry heading text for changelog entries created by “scriv collect”.

Default: {% if version %}{{ version }} — {% endif %}{{ date.strftime('%Y-%m-%d') }}

format

The format to use for fragments and for the output changelog file. Can be either “rst” or “md”.

Default: rst

fragment_directory

The directory for fragments. This directory must exist, it will not be created.

Default: changelog.d

ghrel_template

The template to use for GitHub releases created by the scriv github-release command.

The extracted Markdown text is available as {{body}}. You must include this to use the text from the changelog file.
The version is available as {{version}}.

The data for the release is available in a {{release}} object, including {{release.prerelease}}. It’s a boolean,
true if this is a pre-release version.

The scriv configuration is available in a {{config}} object.

Default: {{body}}

insert_marker

A marker string indicating where in the changelog file new entries should be inserted.

Default: scriv-insert-here

main_branches

The branch names considered uninteresting to use in new fragment file names.

Default: master, main, develop

2.4. Configuration 13

https://jinja.palletsprojects.com


scriv, Release 1.5.1

md_header_level

A number: for Markdown changelog files, this is the heading level to use for the entry heading.

Default: 1

new_fragment_template

The Jinja template to use for new fragments.

Default: file: new_fragment.${config:format}.j2

output_file

The changelog file updated by “scriv collect”.

Default: CHANGELOG.${config:format}

rst_header_chars

Two characters: for reStructuredText changelog files, these are the two underline characters to use. The first is for the
heading for each changelog entry, the second is for the category sections within the entry.

Default: =-

skip_fragments

A glob pattern for files in the fragment directory that should not be collected.

Default: README.*

version

The string to use as the version number in the next header created by scriv collect. Often, this will be a literal:
directive, to get the version from a string in a source file.

Default: (empty)

2.4.4 Per-User Git Settings

Some aspects of scriv’s behavior are configurable for each user rather than for the project as a whole. These settings
are read from git.

14 Chapter 2. Getting Started

https://jinja.palletsprojects.com


scriv, Release 1.5.1

Editing and Adding

These settings determine whether the “scriv create” and “scriv collect” commands will launch an editor, and “git add”
the result:

• scriv.create.edit

• scriv.create.add

• scriv.collect.edit

• scriv.collect.add

All of these are either “true” or “false”, and default to false. You can create these settings with git config commands,
either in the current repo:

$ git config scriv.create.edit true

or globally for all of your repos:

$ git config --global scriv.create.edit true

User Nickname

Scriv includes your git or GitHub username in the file names of changelog fragments you create. If you don’t like the
name it finds for you, you can set a name as the scriv.user_nick git setting.

2.5 Changelog

2.5.1 Unreleased

See the fragment files in the changelog.d directory.

2.5.2 1.5.1 — 2023-12-14

Fixed

• Fixed the documentation build on ReadTheDocs. Fixes issue 118.

2.5.3 1.5.0 — 2023-10-18

Added

• RST to Markdown conversion can now be stricter. Using the --fail-if-warn option on the scriv
github-releases command will fail the command if your RST conversion generates warnings, for example
due to malformed link references.

• The scriv github-release command now has a --check-links option to check URLs. Each is fetched,
and if an error occurs, warnings will show the URLs that didn’t succeed.

2.5. Changelog 15

https://git-scm.com/book/en/v2/Customizing-Git-Git-Configuration
https://github.com/nedbat/scriv/tree/master/changelog.d
https://github.com/nedbat/scriv/issues/118


scriv, Release 1.5.1

Fixed

• Commands no longer display full tracebacks for exceptions raised by scriv code.

2.5.4 1.4.0 — 2023-10-12

Added

• Literals can be extracted from .cabal files. Thanks Javier Sagredo.

• Use the git config scriv.user_nick for the user nick part of the fragment file. Thanks to Ronny Pfannschmidt,
fixing issue 103.

• Settings can now be prefixed with command: to execute the rest of the setting as a shell command. The output
of the command will be used as the value of the setting.

Fixed

• If there are no changelog fragments, scriv collect now exits with status code of 2, fixing issue 110.

• Changelogs with non-version headings now produce an understandable error message from scriv collect,
thanks to James Gerity, fixing issue 100.

2.5.5 1.3.1 — 2023-04-16

Fixed

• The Version class introduced in 1.3.0 broke the scriv github-release command. This is now fixed.

2.5.6 1.3.0 — 2023-04-16

Added

• .cfg files can now be read with literal: settings, thanks to Matias Guijarro.

Fixed

• In compliance with PEP 440, comparing version numbers now ignores a leading “v” character. This makes scriv
more flexible about how you present version numbers in various places (code literals, changelog entries, git tags,
and so on). Fixes issue 89.

16 Chapter 2. Getting Started

https://github.com/nedbat/scriv/pull/91
https://github.com/nedbat/scriv/pull/106
https://github.com/nedbat/scriv/pull/103
https://github.com/nedbat/scriv/issues/110
https://github.com/nedbat/scriv/pull/101
https://github.com/nedbat/scriv/issues/100
https://github.com/nedbat/scriv/pull/88
https://peps.python.org/pep-0440/
https://github.com/nedbat/scriv/issues/89


scriv, Release 1.5.1

2.5.7 1.2.1 — 2023-02-18

Fixed

• Scriv would fail trying to import tomllib on Python <3.11 if installed without the [toml] extra. This is now
fixed, closing issue 80.

• Settings specified as file: will now search in the changelog directory and then the current directory for the file.
The only exception is if the first component is . or .., then only the current directory is considered. Fixes issue
82.

• Python variables with type annotations can now be read with literal: settings, fixing issue 85.

• Error messages for mis-formed literal: configuration values are more precise, as requested in issue 84.

• Error messages from settings validation are ScrivExceptions now, and report configuration problems more clearly
and earlier in some cases.

2.5.8 1.2.0 — 2023-01-18

Added

• scriv github-release now has a --repo= option to specify which GitHub repo to use when you have mul-
tiple remotes.

Changed

• Improved the error messages from scriv github-release when a GitHub repo can’t be identified among the
git remotes.

2.5.9 1.1.0 — 2023-01-16

Added

• The scriv github-release command has a new setting, ghrel_template. This is a template to use when
building the release text, to add text before or after the Markdown extracted from the changelog.

• The scriv github-release command now has a --dry-run option to show what would happen, without
posting to GitHub.

Changed

• File names specified for file: settings will be interpreted relative to the current directory if they have path
components. If the file name has no slashes or backslashes, then the old behavior remains: the file will be found
in the fragment directory, or as a built-in template.

• All exceptions raised by Scriv are now ScrivException.

2.5. Changelog 17

https://github.com/nedbat/scriv/issues/80
https://github.com/nedbat/scriv/issues/82
https://github.com/nedbat/scriv/issues/82
https://github.com/nedbat/scriv/issues/85
https://github.com/nedbat/scriv/issues/84


scriv, Release 1.5.1

Fixed

• Parsing changelogs now take the insert-marker setting into account. Only content after the insert-marker line is
parsed.

• More internal activities are logged, to help debug operations.

2.5.10 1.0.0 — 2022-12-03

Added

• Now literal configuration settings can be read from YAML files. Closes issue 69. Thanks, Florian Küpper.

Fixed

• Fixed truncated help summaries by shortening them, closing issue 63.

2.5.11 0.17.0 — 2022-09-18

Added

• The collect command now has a --title=TEXT option to provide the exact text to use as the title of the new
changelog entry. Finishes issue 48.

Changed

• The github_release command now only considers the top-most entry in the changelog. You can use the --all
option to continue the old behavior of making or updating GitHub releases for all of the entries.

This change makes it easier for projects to start using scriv with an existing populated changelog file.

Closes issue 57.

Fixed

• If there were no fragments to collect, scriv collect would make a new empty section in the changelog. This was
wrong, and is now fixed. Now the changelog remains unchanged in this case. Closes issue 55.

• The github-release command will now issue a warning for changelog entries that have no version number.
These can’t be made into releases, so they are skipped. (issue 56).

• scriv collect will end with an error now if the version number would duplicate a version number on an
existing changelog entry. Fixes issue 26.

18 Chapter 2. Getting Started

https://github.com/nedbat/scriv/issues/69
https://github.com/nedbat/scriv/pull/70
https://github.com/nedbat/scriv/issues/63
https://github.com/nedbat/scriv/issues/48
https://github.com/nedbat/scriv/issues/57
https://github.com/nedbat/scriv/issues/55
https://github.com/nedbat/scriv/issues/56
https://github.com/nedbat/scriv/issues/26


scriv, Release 1.5.1

2.5.12 0.16.0 — 2022-07-24

Added

• The github_release command will use a GitHub personal access token stored in the GITHUB_TOKEN en-
vironment variable, or from a .netrc file.

Fixed

• The github_release command was using git tags as a command when it should have used git tag.

• Anchors in the changelog were being included in the previous sections when creating GitHub releases. This has
been fixed, closing issue 53.

2.5.13 0.15.2 — 2022-06-18

Fixed

• Quoted commands failed, so we couldn’t determine the GitHub remote.

2.5.14 0.15.1 — 2022-06-18

Added

• Added docs for scriv github-release.

Fixed

• Call pandoc properly on Windows for the github_release command.

2.5.15 0.15.0 — 2022-04-24

Removed

• Dropped support for Python 3.6.

Added

• The github-release command parses the changelog and creates GitHub releases from the entries. Changed entries
will update the corresponding release.

• Added a --version option.

2.5. Changelog 19

https://github.com/nedbat/scriv/issues/53


scriv, Release 1.5.1

Changed

• Parsing of fragments now only attends to the top-level section headers, and includes nested headers instead of
splitting on all headers.

2.5.16 0.14.0 — 2022-03-23

Added

• Add an anchor before each version section in the output of scriv collect so URLs for the sections are pre-
dictable and stable for each new version (Fixes issue 46). Thanks Abhilash Raj and Rodrigo Girão Serrão.

Fixed

• Markdown fragments weren’t combined properly. Now they are. Thanks Rodrigo Girão Serrão.

2.5.17 0.13.0 — 2022-01-23

Added

• Support finding version information in TOML files (like pyproject.toml) using the literal configuration
directive. Thanks, Kurt McKee

2.5.18 0.12.0 — 2021-07-28

Added

• Fragment files in the fragment directory will be skipped if they match the new configuration value
skip_fragments, a glob pattern. The default value is “README.*”. This lets you put a README.md file in
that directory to explain its purpose, as requested in issue 40.

Changed

• Switched from “toml” to “tomli” for reading TOML files.

Fixed

• Setting format=md didn’t properly cascade into other default settings, leaving you with RST settings that needed
to be explicitly overridden (issue 39). This is now fixed.

20 Chapter 2. Getting Started

https://github.com/nedbat/scriv/issues/46
https://github.com/nedbat/scriv/issues/40
https://github.com/nedbat/scriv/issues/39


scriv, Release 1.5.1

2.5.19 0.11.0 — 2021-06-22

Added

• A new poorly documented API is available. See the Scriv, Changelog, and Fragment classes in the scriv.scriv
module.

Changed

• Python 3.6 is now the minimum supported Python version.

Fixed

• The changelog is now always written as UTF-8, regardless of the default encoding of the system. Thanks, Hei
(yhlam).

2.5.20 0.10.0 — 2020-12-27

Added

• Settings can now be read from a pyproject.toml file. Install with the “[toml]” extra to be sure TOML support is
available. Closes issue 9.

• Added the Philosophy section of the docs.

Changed

• The default entry header no longer puts the version number in square brackets: this was a misunderstanding of
the keepachangelog formatting.

• Respect the existing newline style of changelog files. (#14) This means that a changelog file with Linux newlines
on a Windows platform will be updated with Linux newlines, not rewritten with Windows newlines. Thanks,
Kurt McKee.

Fixed

• Support Windows’ directory separator (\) in unit test output. (#15) This allows the unit tests to run in Windows
environments. Thanks, Kurt McKee.

• Explicitly specify the directories and files that Black should scan. (#16) This prevents Black from scanning every
file in a virtual environment. Thanks, Kurt McKee.

• Using “literal:” values in the configuration file didn’t work on Python 3.6 or 3.7, as reported in issue 18. This is
now fixed.

2.5. Changelog 21

https://github.com/nedbat/scriv/issues/9
https://github.com/nedbat/scriv/issues/14
https://github.com/nedbat/scriv/issues/15
https://github.com/nedbat/scriv/issues/16
https://github.com/nedbat/scriv/issues/18


scriv, Release 1.5.1

2.5.21 0.9.2 — 2020-08-29

• Packaging fix.

2.5.22 0.9.0 — 2020-08-29

Added

• Markdown format is supported, both for fragments and changelog entries.

• Fragments can be mixed (some .rst and some .md). They will be collected and output in the format configured
in the settings.

• Documentation.

• “python -m scriv” now works.

Changed

• The version number is displayed in the help message.

2.5.23 0.8.1 — 2020-08-09

Added

• When editing a new fragment during “scriv create”, if the edited fragment has no content (only comments or
blank lines), then the create operation will be aborted, and the file will be removed. (Closes issue 2.)

Changed

• If the fragment directory doesn’t exist, a simple direct message is shown, rather than a misleading FileNotFound
error (closes issue 1).

Fixed

• When not using categories, comments in fragment files would be copied to the changelog file (issue 3). This is
now fixed.

• RST syntax is better understood, so that hyperlink references and directives will be preserved. Previously, they
were mistakenly interpreted as comments and discarded.

2.5.24 0.8.0 — 2020-08-04

Added

• Added the collect command.

• Configuration is now read from setup.cfg or tox.ini.

• A new configuration setting, rst_section_char, determines the character used in the underlines for the section
headings in .rst files.

22 Chapter 2. Getting Started

https://github.com/nedbat/scriv/issues/2
https://github.com/nedbat/scriv/issues/1
https://github.com/nedbat/scriv/issues/3


scriv, Release 1.5.1

• The new_entry_template configuration setting is the name of the template file to use when creating new entries.
The file will be found in the fragment_directory directory. The file name defaults to new_entry.FMT.j2. If the
file doesn’t exist, an internal default will be used.

• Now the collect command also includes a header for the entire entry. The underline is determined by the
“rst_header_char” settings. The heading text is determined by the “header” setting, which defaults to the current
date.

• The categories list in the config can be empty, meaning entries are not categorized.

• The create command now accepts –edit (to open the new entry in your text editor), and –add (to “git add” the
new entry).

• The collect command now accepts –edit (to open the changelog file in an editor after the new entries have been
collected) and –add (to git-add the changelog file and git rm the entries).

• The names of the main git branches are configurable as “main_branches” in the configuration file. The default
is “master”, “main”, and “develop”.

• Configuration values can now be read from files by prefixing them with “file:”. File names will be interpreted
relative to the changelog.d directory, or will be found in a few files installed with scriv.

• Configuration values can interpolate the currently configured format (rst or md) with “${config:format}”.

• The default value for new templates is now “file: new_entry.${config:format}.j2”.

• Configuration values can be read from string literals in Python code with a “literal:” prefix.

• “version” is now a configuration setting. This will be most useful when used with the “literal:” prefix.

• By default, the title of collected changelog entries includes the version if it’s defined.

• The collect command now accepts a --version option to set the version name used in the changelog entry title.

Changed

• RST now uses minuses instead of equals.

• The create command now includes the time as well as the date in the entry file name.

• The –delete option to collect is now called –keep, and defaults to False. By default, the collected entry files are
removed.

• Created file names now include the seconds from the current time.

• “scriv create” will refuse to overwrite an existing entry file.

• Made terminology more uniform: files in changelog.d are “fragments.” When collected together, they make one
changelog “entry.”

• The title text for the collected changelog entry is now created from the “entry_title_template” configuration
setting. It’s a Jinja2 template.

• Combined the rst_header_char and rst_section_char settings into one: rst_header_chars, which much be exactly
two characters.

• Parsing RST fragments is more flexible: the sections can use any valid RST header characters for the underline.
Previously, it had to match the configured RST header character.

2.5. Changelog 23



scriv, Release 1.5.1

Fixed

• Fragments with no category header were being dropped if categories were in use. This is now fixed. Uncatego-
rized fragments get sorted before any categorized fragments.

2.5.25 0.1.0 — 2019-12-30

• Doesn’t really do anything yet.

24 Chapter 2. Getting Started



CHAPTER

THREE

HOW TO CONTRIBUTE

Contributions on GitHub are very welcome. Thanks to all the contributors so far:

Ned Batchelder
Abhilash Raj
Agustín Piqueres
Flo Kuepper
James Gerity
Javier Sagredo
Kurt McKee
Matias Guijarro
Rodrigo Girão Serrão
Ronny Pfannschmidt

25

https://github.com/nedbat/scriv

	Overview
	Getting Started
	Philosophy
	Other Tools

	Concepts
	Fragments
	Categories
	Entries

	Commands
	scriv create
	File creation
	Editing
	Adding

	scriv collect
	Entry Creation
	Fragment Deletion
	Editing
	Adding

	scriv github-release

	Configuration
	Files Read
	Settings Syntax
	File Prefix
	Literal Prefix
	Commands
	Value Substitution

	Settings
	categories
	end_marker
	entry_title_template
	format
	fragment_directory
	ghrel_template
	insert_marker
	main_branches
	md_header_level
	new_fragment_template
	output_file
	rst_header_chars
	skip_fragments
	version

	Per-User Git Settings
	Editing and Adding
	User Nickname


	Changelog
	Unreleased
	1.5.1 — 2023-12-14
	Fixed

	1.5.0 — 2023-10-18
	Added
	Fixed

	1.4.0 — 2023-10-12
	Added
	Fixed

	1.3.1 — 2023-04-16
	Fixed

	1.3.0 — 2023-04-16
	Added
	Fixed

	1.2.1 — 2023-02-18
	Fixed

	1.2.0 — 2023-01-18
	Added
	Changed

	1.1.0 — 2023-01-16
	Added
	Changed
	Fixed

	1.0.0 — 2022-12-03
	Added
	Fixed

	0.17.0 — 2022-09-18
	Added
	Changed
	Fixed

	0.16.0 — 2022-07-24
	Added
	Fixed

	0.15.2 — 2022-06-18
	Fixed

	0.15.1 — 2022-06-18
	Added
	Fixed

	0.15.0 — 2022-04-24
	Removed
	Added
	Changed

	0.14.0 — 2022-03-23
	Added
	Fixed

	0.13.0 — 2022-01-23
	Added

	0.12.0 — 2021-07-28
	Added
	Changed
	Fixed

	0.11.0 — 2021-06-22
	Added
	Changed
	Fixed

	0.10.0 — 2020-12-27
	Added
	Changed
	Fixed

	0.9.2 — 2020-08-29
	0.9.0 — 2020-08-29
	Added
	Changed

	0.8.1 — 2020-08-09
	Added
	Changed
	Fixed

	0.8.0 — 2020-08-04
	Added
	Changed
	Fixed

	0.1.0 — 2019-12-30


	How To Contribute

